Summary of the Recent Developed Techniques for Machine Health Prognostics
نویسندگان
چکیده
This paper reviews relatively new developed techniques for machine health prognostics system. The prognostics assessment of machines is an important consideration for determining the remaining useful life (RUL) of machine components and prediction of future state of machines. The developed system has employed several approaches of machine health prognostics strategy such as data-driven, physical-based, and probability-based methods. The method of solution implemented artificial intelligence techniques including support vector machine (SVM), relevance vector machine (RVM), Dempster-Shafer theory, decision tree, particle filter, and autoregressive moving average/ generalized autoregressive conditional heteroscedasticity (ARMA/GARCH). Case studies of machine health prognostics are also presented to show the plausibility of the developed systems. Finally, this paper summarizes the research finding and directions of machine health prognostics system.
منابع مشابه
Development of Intelligent Techniques for Machine Prognostics
The prognostic system plays a crucial role in estimating the remaining useful life of machine components and forecasting of the future states of machines. The techniques related to prognostics consist of statistical-based, model-based, and data driven or intelligence-based. Among these, artificial intelligence is commonly used due to its flexibility in generating appropriate models for the fore...
متن کاملAutomatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کاملDevelopment of an Ensemble Multi-stage Machine for Prediction of Breast Cancer Survivability
Prediction of cancer survivability using machine learning techniques has become a popular approach in recent years. In this regard, an important issue is that preparation of some features may need conducting difficult and costly experiments while these features have less significant impacts on the final decision and can be ignored from the feature set. Therefore, developing a machine for p...
متن کاملCarbon Monoxide Prediction in the Atmosphere of Tehran Using Developed Support Vector Machine
Air quality prediction is highly important in view of the health impacts caused by exposure to air pollutants in urban air. This work has presented a model based on support vector machine (SVM) technique to predict daily average carbon monoxide (CO) concentrations in the atmosphere of Tehran. Two types of SVM regression models, i.e. -SVM and -SVM techniques, were used to predict average daily C...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کامل